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RELATIVE CORRESPONDENCE METHOD AND ITS APPLICATION IN 

MEASUREMENT PRACTICE 

V. I. Gudkov and V. P. Motulevich UDC 536.2:536.5 

The fundamental possibilities of applying an approximate method of calculating 
physical processes -- the relative correspondence method -- to the indirect measure- 
ment of quantities are analyzed. Practical examples are given. 

The fundamental propositions of the relative correspondence method were formulated in 
[i, 2]. The effectiveness of its application for approximate calculations of physical pro- 
cesses was illustrated on the solution of a number of practical problems [i-3]. Further 
analysis of the method showed, however, that the feasibility of its use is not confined to 
the circle of theoretical--calculation problems but also extends to the region of measurement 
practice [4]. 

Quantities are measured indirectly in the majority of cases in engineering and scientific 
research. The unknown physical quantity y, dependent on several quantities, is defined by the 
general equation 

y =  i~1 ,  x~, . . , ,  x p ) + ~ l ~ l ,  ~ . . . .  , x3, (1) 

where i(xl, x2, ..., Xp) and l(xl, x2 .... , x~) are the measured quantities or functions of 
these quantities. The expression (i) is written so as to isolate a certain parameter or com- 
plex 

= f~1, x~ . . . . .  ~ . . . . .  x~), (2) 

the determination of which is difficult under the measurement conditions. The latter may be 
a consequence of the fact that it is impossible to measure the quantity B directly, while for 
its calculation or extrapolation there is either an approximate or an exact but very compli- 
cated relation. In a number of cases such difficulties prove to be surmountable using the 
relative correspondence method. 

The essence of this method consists in the following: In the determination of relative 
quantities with a given degree of confidence it is possible to use a less precise model of 
the process than in the determination of absolute quantities. 

Let us initially consider B as a function of one argument xj, 

= f = f (x j). ( 3 )  

We assume that a simplified model relation 

~ ~ = ~ ~ (4) 

exists for B and that the initial quantity 

= f (XJo) (5) 

is known sufficiently exactly for the initial value (favorable for the calculated or experi- 
mental determination of 6) of the argument Xjo. Then the approximate value ~* of the param- 
eter (complex) ~ is determined by the calculating formula 

/ ~ * = f o  ~ , (6) 
% 
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where 

~0 : ~ (x~). (7) 

H e r e  i t  i s  a s sumed  t h a t  ~ and  f a r e  o n e - t o - o n e  f u n c t i o n s  of  t h e  r e a l  v a r i a b l e  n o t  t a k i n g  a 
value of zero. 

It is obvious that Eq. (6) is preferable to (4) in that region of the parameters where 
the relative error of the resultant quantity * proves to be smaller than ~. For the same 
values of the argument this condition can be expressed, using (6), in the form 

where 

T= fifo; ~ =  ~/mo. (9) 

Let us give cases when the relative correspondence method increases the accuracy of the 
final result in a calculation from Eq. (6). 

In the most general case all the possible variants of the reciprocal combination of two 
functions with ~/f > 0 can be divided into two groups as a function of the ratios ~/f and 
y/f: 

i) the condition 

~I[ ~ 1; ~If~ i (lO) 

is satisfied for the first; 

2) the condition 

~I:~ l; ~If-~l ( i i )  

is satisfied for the second. 

Two functions such that the difference between them grows in absolute value as the argu- 
ment increases (Fig. la), 

I~- - : l> lmo- -H for x > x o ,  (12) 

are called diverging functions, and when this difference decreases (Fig. ib), 

lw--fl<l%--fo] ~r x > x o ,  (13) 

they are called converging functions. 

One can show that the inequalities (12) and (13) are transformed into corresponding in- 
equalities of the following type: 

(~ -- f)/(~o -- ~) > I, (14) 

(~ -- :)I(~o-- ~) < i. (15) 

An analysis of combinations of two increasing or two decreasing functions, as the most 
likely to be encountered in practice, showed the following._The condition (i0) is satisfied 
for diverging decreasing functions [(cp-- f)/(~0 -- fo) > i, ~ < i,_~ < 1]_and the condition 
(ii) for converging increasing functions [(~ -- f)/(~0 -- fo) < i, ~ > i, f > I]. Diverging 
increasin~ [(~--f)/(~0 -- fo) > 1, ~ > i, f > i] and converging decreasing [(~-- f)/(~0 -- 
fo) < i, ~ < i, f < i] functions satisfy the equalities appearing either in the condition (i0) 
or in the condition (ll) in accordance with the expressions 

for (~-- f)/(~o -- fo) > <~or 

(16) 

rp/f< |; ~p/f~ | (17) 

for (~--f)/(~P0- fo) <> f. Here the functions 
fo) > i, if ~ < f, ~ > f (or T > (~- f)/(m~_-- 
dive_rgin_g increasing_, while the functions (~ < 
if cp > f, (~ > f (or f < (~-- f)/(~0 -- fo) < I, 

(~ > i, f > i) for which $ > (~-- f)l(~0 -- 
fo)_> I, if q~ > f, ~_< f) can be called weakly 
I, f < i) for which ~ < (q~-- f)/(~0-- fo) < i, 
if ~ < f, ~ < f) can be called weakly converging 
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Fig. I. Scheme of application of the relative corre- 
spondence method in the case of diverging decreasing 
(a) and converging increasing(b) functions ~ and f. 
Xlim) limiting value of the argumentfor the practical 
application of the method corresponding to Eq. (18). 

decreasing functions. As shown i n  [2], the requirement (8) is always satisfied for the first 
group of functions (i0), while for the second group (Ii) it is satisfied under the condition 

_~_~., 2 (18) 
[ 1 + ~ / %  

In the relations (i0), (ii), and (16)-(18) it is assumed that the inequalities corre- 
sponding to the symbols located on the same level are satisfied. 

The method is also preferable in the following particular cases of relation between the 
functions ~ and f. 

i. ~ and f are proportional to each other: 9 .= kf, where k = const, Substituting this 
proportion into (6) and (9), we obtain 

respectively, i.e., here the method leads to an ahsolute!y exact result. 

2. The argument obtains small increments, Axj § 0. Expanding the functions ~ and f in 
Taylor series in the vicinity of the point Xjo, it is easy to ascertain that ~-+~ o and f + 
fo, and hence 

mJ :' I< ml l I I 
3 .  T h e  t r i v i a l  c a s e  w h e n  t h e  m o d e l  f u n c t i o n  a p p r o a c h e s  t h e  e x a c t  o n e ,  A ~ - + [ ,  c o r r e -  

s p o n d s  to the fact that 

The results of an analysis of a function of one variable presented above can be extended 
to a function of many variables [2]. Let fj = f(xl, x2, ..., xj, x(j+~)o, ..., Xko). Then 
in the obvious equality 

/ ~ f o ZL j_:_~... J J__. _if (19) 
fo f :  fJ-~ " A..-: 

it is sufficient to substitute the approximate fj/fj-1 ~j/cp j-t, which follows from the ex- 
pression (6), to obtain the final calculating formula 

~*:[o % ~ ,. . . . .  % % , (20) 

where 

~ = ~ j ( x ~ ,  x~ . . . . .  x~, xo+:~ o . . . . .  Xho). ( 2 1 )  

A graphic illustration of the application of the relative correspondence method to a 
function of many variables is presented in Fig. 2 in an especially arbitrary plane depiction. 
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Fig. 2. Arbitrary scheme of ap- 
plication of the relative corre- 
spondence method for finding a 
function of several variables. 

The exact function f (which, generally speaking, consists of a certain surface in k-dimen- 
sional space) is shown here in the form of a smooth, solid, continuous curve passing through 
the initial point 0 and the final point A. The solid bent curve is the line along which we 
will approach the point A if we use Eq. (19). In each continuous segment of this bent curve 
bounded by vertical lines xj = const only one argument varies. The series of separate curves 
of the model functions ~j corresponding to the exact functions fj in the isolated segments 
is shown in the upper part of the figure. And finally, the dashed curve describes the order 
of determination of the approximate value ~* using the calculating formula (20). 

The method under consideration presumes, at its foundation, the operation with relative 
quantities. This allows the realization of one more procedure. If when making measurements 

of physical quantities in practice one uses several sensors similar to each other or several 
similar modes of operation (constants) of the same sensor, then one can construct the corre- 
sponding number of equations of the type (I). For clarity, we consider a variant with two 
sensors or two constants of one sensor. In this case we have a system of two equations, the 
solution of which for y has the form 

y = {i'(x~, x2, . . . ,  x~)l"(x~, x ~ , . . . ,  x ~ ) - - i " ( x ~ ,  x: . . . . .  xp) l '  (x;, x2 ,  (22) 

w h e r e  . . . .  x;  ) ~}{I" (x~, x~ . . . .  ~ )  - -  I '  (x~, x~, . . . ,  x;)  ~}- t ,  

[ '  " X}, x~) ( 2 3 )  = ( x ; ,  x2  . . . . .  . . . ,  

. . . . .  . . . ,  , 

while the indices (') and (") refer to the first and second sensors or the first and second 
state of the sensor, respectively. The ratio of complexes ~ of (23), to which the relative 
correspondence method can be applied, appears in Eq. (22). The calculating relation for the 
quantity B follows from the expressions (6), (9), and (23): 

:, , ,  $' 
~=__~(~ ) (241 

:" (~*F ~" ~" 

The advantages of such an approach are easy to demonstrate on particular cases when the 
quantities whose determination is associated with large errors are eliminated from Eqs. (22) 
and (23). 

a) If the complex $ remains constant (f' = f") or its variation is negligibly small 
(f,, _ fT = 0) at all stages of the measurements during the required_variation of the argu- 
ments, then the unknown parameter y in Eq. (22) does not depend on B, since B ~ i. 

b) By analogy with Sec. 2), the ratio of complexes (23) approaches unity (B § i) when 
' x" x~, . ) In this case the variation of the independent variables is small (x~ * x~, 2 § .. �9 

however, one must take into account the increase in the errors in determining small incre- 
ments of the measured quantities. 

c) If the functions f or ~ are one-term functions, then individual factors whose values 
are conserved or vary slightly are cancelled in Eq. (24). 
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Thus, on the basis of the particular and more general cases analyzed we can conclude 
that for the functions under consideration the probability of a positive result when using 
the relative correspondence method in a certain given range of variation of the parameters 
exceeds 50%. 

Let us discuss three concrete examples of measurement of the temperatures of moving 
heated media. 

I. Method of Two Thermometers. When the temperature of a gas stream is measured by 
contact methods the methodological error is due mainly to the inequality of the intrinsic 
temperature T of the sensitive element of the sensor and the gas temperature Tm. For thermo- 
electric sensors in the absence of heat transfer by heat conduction through the conductors 
of the thermoelectrodes and under conditions of an optically thin gas this temperature dif- 
ference in a steady state is determined from the equilibrium between convective heat ex- 
change of the hot junction with the gas stream and radiant heat exchange with the surrounding 
bodies, 

Tm-- T = ~oo 
,, - -  ( 2 s )  

In high-temperature media the fulfillment of the requirement (Tm-- T) § 0 is a very difficult 
task in practice. Therefore, to determine Tm one must also determine u and E, which intro- 
duces additional significant errors. 

If one uses two thermocouples with hot junctions of different characteristic sizes d' 
and d", then one can construct a system of two heat-balance equations (25). We write its 
solution as [5] 

[ (1-- T) (1- -  T~ur) ] (26) rm : r '  1 + TM - '  ' 

where ~ = a'/a", ~E = g"/r T = T"/T', --Tsu r = Tsur/T'. 

The ratio Sa can be found using one-term approximate functions connecting the Nusselt 
and Reynolds numbers. Thus, the use of a simplified function of the type Nu = const Re n for 
spherical and cylindrical hot junctions of thermocouples leads to the simple expression 

d" ~1--n ~ =  \ _ ~ )  (27) 

The o ther  r a t i o  ~ fo r  un i fo rm thermocouples i s  c lose to u n i t y  i n  p r a c t i c e ,  and i t  can 
be expressed as a l i n e a r  f u n c t i o n  of  temperature when necessary.  I f  two sensors of  the same 
size but with different and known coefficients e are used (B~ ~ i), then Bu = i. Th__e method 
of two thermometers is successfully used in experimental research, especially when Tsu r ~ i. 
Let us give a numerical example. 

A calculation from Eqs. (26) and (27) with the substitution of the readings of two thermo- 
couples of spherical shape, which are given in [6] (d' = 0.2 mm, d" = 0.5 mm, n = 0.461, 
Tsur << i), yielded a final result of high accuracy. The discrepancy between the resulting 
value of Tm and the actual gas temperature did not exceed 0.2% at gas-stream temperatures of 
1233 and 1248~ whereas the relative error of the direct measurements lay in the range of 
4-6%. 

2. Exponential Method. This method is applicable in the region of high gas-stream tem- 
peratures exceeding the melting temperatures of materials. It is based on the measurement of 
the rise in the temperature of a body placed in the stream in the initial heating period [7]. 
The differential equation of heating of a body with a small Biot number (Bi < 0.i) and with 
constant physical properties has a simple analytical solution: 

(TIn-T) 
( 2 s )  

If we take the ratio of the solutions (28) for two times T' and T", then the heating 
rate m is eliminated in the result. By solving a system of three Eqs. (28) written for three 
equally spaced times (T" -- ~' = z"' -- T"), we obtain an equation for T m containing only the 
temperatures of the sensitive element T', T", and T"' at the chosen times, 
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Tm= T'" (T3~--Y' 
2T"--T'--I  " '  (29) 

where T' = T'/T"'; T--" = T"/T"'. 

Under the assumption that the heat capacity of the sensor material has a linear depen- 
dence on its temperature, C = Co + bT, where Co and b are constants, the calculating equa- 
tion has the form 

(T m -- T " ) 2 - - ( T m  - T')(T m -  T"')exp [ b ( 2 T " - - T ' - - T ' " )  ] 
- -  Co + bTm = O. 

(30) 

The use of this method permitted a two- to threefold decrease ~n the relative error of 
measurements of gas temperature in this case. In measurements of the temperatures of a sub- 
sonic air stream up to 1000~ the relative error was less than 1.5%, and in temperature 
measurements up to 3700~ it was about 15% [8]. 

3. Method of Transitional Modes of Heat Exchange. The method is applicable in princ- 
iple in high-temperature media. It is based on the solution of the inverse heat-conduction 
problem, in which the boundary condition is formulated as 

Tm= T~ i ~ / dT ~ (31) 

where Tw is the surface temperature of the body; (dT/dn)w is the temperature gradient along 
the normal. In the simplest variant, considering two different thermal states of a unbounded 
plane-parallel plate with constant properties, for example, the expression for the indirect 
determination of the temperature of a moving liquid or gaseous medium will be 

Tm =.= T ~ ~L T--AT ( 3 2 )  

where Ba = a'/~"; T = T'/T"; AT= AT'/AT". 

If ~' = a" (~a = i), the determination of Tm comes down to the measurement of only two 
temperature quantities within the plate in two of its temperature states: T' and T", the 
temperature at any point of the plate, and AT' and AT", the temperature drops between two 

points of it. 

With a limited relative variation of the coefficient a the functional connection between 
and B--~ and the physical parameters can be approximated by simple temperature functions, 

power-law in particular. 

The temperature of a liquid circulating in a constant-temperature bath were measured in 
[9] by the latter method using cylindrical sensor representing a model of an unbounded plate. 
With a temperature of 366.8 • 0.05~ of the medium and arms error in the temperature measure- 
ments within the sensitive element of 0.73%, the relative methodological error of the end 
result was 1.7% under the assumption that a = const (Ba = i). In turn, the direct applica- 
tion of Eq. (31) yields a result at least an order of magnitude coarser. This is due to the 
fact that the absolute value of a can be determined very approximately for the given experi- 
ments with unclearly expressed hydrodynamic and temperature conditions at the outer limit of 
the boundary layer at the sensor surface. 

Thus, the data presented provide a basis for stating the following. When making experi- 
ments the use of an approximate method of mathematical description of the physical processes 
taking place with the sensors -- the relative correspondence method -- makes it possible to 
considerably simplify the measurements and increase their accuracy in a number Df cases. 

NOTATION 

x, independent (directly measured) quantity; y, dependent (sought) quantity, f, @, 
exact and approximate functions describing the physical process; @*, calculated function de- 
termined by the relative correspondence method in accordance with Eqs. (6) and (20); T, tem- 
perature; c, emissivity; oo, Stefan--Boltzmann constant; a, coefficient of heat transfer; %, 
coefficient of thermal conductivity; C, specific heat; T, time; m, heating rate. Indices: 0, 
initial value; m, medium; sur, surrounding bodies; w, sensor wall; ('), pertaining to first 
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sensor or the first state of the sensor; ("), to second sensor or second state of the same 
sensor; (), relative dimensionless quantity or function. 
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NONDESTRUCTIVE MONITORING METHODS IN THE INVESTIGATION OF THE 

THERMOPHYSICAL CHARACTERISTICS OF SOLIDS 

V. P. Kozlov and A. V. Stankevich UDC 536.21 

Nondestructive methods are proposed for the complex determination of the thermo- 
physical characteristics of solids on the basis of solutions of a system of two- 
dimensional nonstationary heat-conduction equations. Appropriate computational 
formulas are presented. 

In recent years, a number of papers [1-3] has been published whose authors use the 
regularities of two- and three-dimensional nonstationary temperature field development ina 
half-space to determine the thermophysical characteristcs of substances when heat is sup- 
plied through a circle of known radius. 

If the methods of determining the thermal properties which are based on the two-dimen- 
sional nonstationary solutions of the classical boundary-value problem of heat conduction 
for a half-space are compared with the corresponding one-dimensional methods [4], the deduc- 
tion can be made that the principal advantage of the former is the possibility of executing 
complex measurements of the thermal diffusivity, thermal conductivity, and thermal activity 
coefficients of solids for known values of the temperature and heat flux on just the body 
surface in its local heating area. Therefore, to find the thermophysical characteristics 
mentioned from one experiment, there is no need to spoil the wholeness of the specimen and 
install appropriate sensors therein. Moreover, because of the reduction in the time to pre- 
pare the specimen for the experiment, the productivity of the method is raised significantly. 
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